TGen Launches Center for Rare Childhood Disorders
The Translational Genomics Research Institute (TGen) has announced the creation of a new center that could have life-changing effects on the lives of potentially thousands of children and their families.
The TGen Center for Rare Childhood Disorders (C4RCD) will harness the latest technologic leaps in genome sequencing to pinpoint the causes of rare childhood disorders that largely remain a mystery to modern medicine.
“We envision a center that leverages today’s genomic technology toward diagnosing children with a baffling array of seriously debilitating, and often lethal, symptoms for which there is no known cause or treatment, let alone a cure. In many cases, it’s merely a collection of symptoms,” said Dr. Jeffrey Trent, president and scientific director of TGen.
“With its new Center for Rare Childhood Disorders, TGen continues to position Arizona as a world-class leader in bioscience and research,” said Gov. Brewer. “More importantly, this program holds the promise of bringing much-needed certainty and hope to the lives of thousands of Arizona children and their families.”
Resolving the plight of one 12-year-old Phoenix girl named Shelby helped pave the way for C4RCD. Shelby was once a wheelchair-bound patient who for nearly a decade had difficulty walking, talking and holding her head up, and who had difficulty swallowing and even breathing.
Shelby’s sequenced genome showed she had a problem making dopamine, a key brain chemical that helps regulate movement, muscle control and balance. Within a few months of receiving a medication to address her dopamine deficiency, Shelby was able to do away with her wheelchair. Now, she can talk, and walk, and enjoy restaurants, shopping and school.
“For us, TGen has been a miracle,” said Shelby’s mother, Renee, who hopes TGen’s C4RCD will bring hope to other parents, as well. “
Often, there are just a few children, or even a single child, with a particular set of symptoms. Collectively, according to the National Institutes of Health, there are close to 7,000 rare diseases and about 25 million people in the U.S. have one.
“Too often, the parents of these children are left with nowhere to turn. They often are simply prescribed medications for their child, such as anti-seizure drugs, that only address the symptoms,” said Dr. David Craig, TGen’s deputy director of bioinformatics and co-director of the C4RCD.
“At TGen, we now have the tools to sequence the entire genome of these children, in a relatively short time and at ever-lower costs. Through this examination of the billions of chemical letters that spell out each human being’s unique genome, and analyzing all the potential genetic changes, or mutations, we now have the ability to potentially identify the root cause of each child’s condition,” said Craig.
Understanding what is causing the disease or condition enables TGen to consider treatment options that could best help each child.
“Largely, these families have not had many answers. They’ve seen a lot of doctors. They’ve run a lot of tests. If they’re lucky, their disease might have a name,” said Dr. Matthew Huentelman, head of TGen’s Neurobehavioral Research Unit and co-director with Dr. Craig of the C4RCD. “We hope to provide these families — first and foremost — with answers. We strongly believe those answers will be found in their genome.”
Once a genetic target is identified, C4RCD will look for an existing FDA-approved drug that could be repurposed to treat the rare disorder.
If there is no obvious approved drug, C4RCD will develop a custom screening approach to prioritize approved drugs in order of their potential effectiveness. In this fashion, it may be possible to help improve the quality of life for these children quickly without the time-consuming development of an entirely new pharmaceutical agent.
Submitted by Steve Yozwiak, TGen senior science writer